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Abstract—This study explores an efficient technique for 

analyzing connected components in dense graphs. The algorithm, 

developed by external researchers, addresses computational 

challenges inherent in traditional methods and significantly 

improves both time and space efficiency. Interestingly, the 

algorithm has found applications beyond its initial scope. These 

findings underscore the algorithm’s versatility and its potential to 

solve complex problems across various domains. 

 

Keywords—Connected Components, Sorting, Time Complexity, 

Space Complexity, Applications.  

 

 

I.   INTRODUCTION 

Graphs, as abstract representations of a set of objects where 

some pairs of the objects are connected by links, serve as one 

of the fundamental structures in the field of computer science. 

They are used in various domains, from network analysis to 

social media analytics, and from route planning to even 

biology. The versatility of graphs stems from their ability to 

model complex systems and relationships in a simplified and 

intuitive manner. 

One of the critical tasks in graph analysis is the study of 

connected components. A connected component of an 

undirected graph is a subgraph in which any two vertices are 

connected to each other by a path, and which is connected to 

no additional vertices in the supergraph. Identifying these 

components helps in understanding the structure of the graph, 

the relationship between its entities, and the overall 

connectivity of the system it represents. 

To facilitate this analysis, the disjoint-set data structure is 

often employed. This data structure allows two crucial 

operations: Union and Find. The Union operation can join two 

sets so that each member in the set belongs to the same 

connected component. On the other hand, the Find operation 

returns the representative of the set that a particular element 

belongs to. These operations can be performed in 

approximately constant time (in 𝑂(𝛼(𝑛)) where 𝛼(𝑛) is the 

inverse Ackermann function which is less than 5 for most 𝑛 

needed since 𝐴(4, 4) = 22
265536

− 3) making the disjoint-set 

data structure a powerful tool for connectivity analysis. 

However, the disjoint-set data structure has a significant 

limitation. While it efficiently records the connectivity 

information, it loses the edge relationship between the vertices 

of a graph. In other words, it can tell us if two vertices are 

connected, but it cannot provide information about the specific 

edges that connect them. This loss of information can be a 

major drawback in scenarios where edge relationships are 

important. 

An alternative approach to preserving edge relationships is 

to use a basic graph traversal method like Depth-First Search 

(DFS) or Breadth-First Search (BFS) using any common graph 

representation. These methods explore the graph by visiting its 

vertices in a systematic manner, thereby preserving the edge 

relationships. However, these methods work in linear time 

relative to the number of nodes and edges. Repeatedly 

traversing the graph conditionally can become computationally 

expensive, especially for dense graphs where the number of 

edges is on the order of the square of the number of vertices. 

In this paper, we explore a modified DFS algorithm 

designed to handle dense graphs with a large number of edges. 

Our goal is to retain the benefits of preserving edge 

relationships while improving computational efficiency for 

many common operations. This is particularly important in the 

era of big data, where graphs can have millions or even billions 

of vertices and an even larger number of edges. 

The modified DFS algorithm we study in this paper is not 

just a theoretical construct but has practical implications as 

well. It opens up new possibilities for graph analysis in various 

domains, thereby bridging the gap between theory and practice. 

We hope that our exploration will inspire further research in 

this direction, leading to more efficient and effective methods 

for graph analysis. 

It’s important to note that, in contrast to the disjoint-set data 

structure, our algorithm of interest does not have a specific 

name. For the purpose of this study, we will refer to it as the 

‘Modified DFS Algorithm’. 

We will use C++ to demonstrate the algorithms instead of 

pseudocode, providing a practical and accessible 

representation. This choice enhances clarity in logic and 

implementation steps, making it more understandable for 

readers with a programming background and bridging the gap 

between theory and practice. 
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Our exploration will commence with an in-depth study of 

the DFS algorithm, particularly its role in identifying 

connected components. Following this, we will conduct a 

comprehensive review of the time complexity associated with 

the DFS algorithm. This examination will provide the 

motivation to introduce slight modifications to both the data 

structure representation and the DFS algorithm itself. The aim 

of these modifications is to equip the algorithm with the 

capability to efficiently handle dense graphs. 

 

II.  THEORY 

A. Depth-First Search (DFS) 

Depth-First Search (DFS) is a crucial algorithm employed 

for investigating nodes and edges within a graph. It navigates 

the graph in a depth-oriented manner and utilizes a stack to 

remember the vertices to which it needs to return after all 

neighboring vertices have been traversed. Given that DFS 

operates with a stack, it can be seamlessly implemented using 

recursion in numerous programming languages, eliminating the 

need for an explicit stack declaration. 

In this paper, we will be using the adjacency list 

representation of the graph to facilitate DFS traversal in 𝑂(𝑉 +
𝐸) where 𝑉 is the number of vertices and 𝐸 is the number of of 

edges. For simplicity, we will assume that the vertices are 

numbered from 0 to 𝑉 − 1. The C++ code is as follows: 

 

 

This is a basic Depth-First Search (DFS) that traverses each 

node in the graph. For simplicity, details are omitted. The code 

can be easily adjusted to count the number of connected 

components by introducing a counter in the inner loop of the 

'run' procedure. Additionally, one can copy each connected 

component to a new graph, forming a graph that consists 

exclusively of that particular connected component. 

DFS visits each vertex exactly once, and the visited boolean 

array ensures that no vertex is visited more than once, 

contributing 𝑂(𝑉) to the time complexity. As DFS traverses 

every edge, each edge is considered twice (once for each 

incident vertex). Therefore, the contribution from edge 

traversal is 𝑂(2𝐸), which simplifies to 𝑂(𝐸) in terms of 

overall time complexity. Hence, the total time complexity is 

𝑂(𝑉 + 𝐸). 
 

 

In dense graphs, the maximum number of edges 

is 𝑉(𝑉 − 1)/2, leading to a time complexity of 𝑂(𝑉2) for DFS 

traversal. While this poses no problem for single traversals, 

certain applications may require conditional graph traversal 

multiple times, resulting in potential slowness in performance. 

In addition to traversal concerns, some applications may 

necessitate operations other than traversal, and these operations 

may not be efficiently supported using the traditional DFS 

approach. This highlights the importance of considering the 

specific requirements of the application and potentially 

exploring alternative algorithms or optimizations tailored to the 

particular tasks at hand. 

 

B. Self-balancing Binary Search Tree 

A self-balancing binary search tree (BST) is a type of binary 

search tree where the structure of the tree is automatically 

adjusted or balanced after each insertion or deletion operation. 

The goal of this balancing act is to maintain the tree in a way 

that ensures relatively uniform depths of subtrees, preventing 

the tree from becoming highly skewed and degrading into a 

linked list. 

In a regular binary search tree, the time complexity of 

operations like insertion, deletion, and search is typically 𝑂(ℎ), 
where ℎ is the height of the tree. In the worst case, when the 

tree is highly unbalanced, the height could be close to 𝑛, where 

𝑛 is the number of elements in the tree. This worst-case 

scenario would lead to operations taking 𝑂(𝑛) time, which 

defeats the purpose of using a binary search tree. 

To address this issue, self-balancing binary search trees use 

algorithms that automatically maintain balance during 

insertions and deletions. One common type of self-balancing 

binary search tree is the red-black tree. In a red-black tree, each 

node is assigned a color (either red or black), and the tree is 

adjusted based on a set of rules that ensure its balance. These 

rules include properties like ensuring that no two consecutive 

red nodes exist on any path from the root to a leaf and 

maintaining the same number of black nodes on all paths from 

the root to the leaves. 

The balancing operations are performed in such a way that 

the height of the tree is logarithmic in the number of elements, 

keeping the time complexity of operations like insertion, 

deletion, and search at 𝑂(log𝑛), where 𝑛 is the number of 

elements in the tree. This ensures that the self-balancing binary 

search tree maintains efficient performance even in the face of 

dynamic operations. 

Note that it is possible to ensure the height is logarithmic in 

the number of elements since 20 + 21 + 22 +⋯+ 2log2𝑛 ≈ 𝑛. 

Table I shows the time complexity of Red-Black tree. 

 

 Amortized Worst Case 

Search 𝑂(log𝑛) 𝑂(log𝑛) 

Insert 𝑂(1) 𝑂(log𝑛) 

Delete 𝑂(1) 𝑂(log𝑛) 

Table I. Time complexity of Red-Black Tree 

 

 

/* 
We assume that the graph is already provided as input to the 
adjacency list 'adj'. Otherwise, global variables, by default, 
have values of zero or are set to false. 
*/ 
const int V = 1000; 
vector<int> adj[V]; 
bool visited[V]; 
 
void dfs(int &node) { 
    visited[node] = true; 
    for (const auto &neighbour : adj[node]) 
        if (!visited[neighbour]) 
            dfs(neighbour); 
} 
 
void run() { 
    for (int node = 0; node < V; ++node) 
        if (!visited[node]) 
            dfs(node); 
} 
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We will use red-black tree in the modified DFS algorithm as 

well as the data structure used to represent the graph. In the 

modified DFS algorithm, we have incorporated the red-black 

tree strategically within the data structure used for graph 

representation. 

The red-black tree plays a pivotal role in maintaining the 

structural integrity of the graph representation. With its self-

balancing characteristics, such as logarithmic height and 

balanced node distribution, the red-black tree significantly 

optimizes the time complexities associated with key graph 

operations, including vertex insertion, deletion, and adjacency 

queries. 

Importantly, the red-black tree is selectively applied within 

the data structure and does not encompass the complete 

representation of the graph. Rather than being a comprehensive 

solution, it acts as a nuanced tool, supporting specific 

operations to leverage its advantages. This careful integration 

ensures that the red-black tree harmonizes with other 

components of the data structure, collectively enhancing the 

overall efficiency of the modified DFS algorithm. 

In C++, the set container in the Standard Template Library 

(STL) is typically implemented using a red-black tree. For our 

algorithm, we will make use of the pre-existing set 

implementation provided by C++, leveraging the efficiency 

and balanced properties inherent in the red-black tree for 

seamless coding of our algorithm. 

 

C. Hash Table 

A hash table is a data structure that implements an 

associative array abstract data type, a structure that can map 

keys to values. It achieves this mapping through a hash 

function, which takes an input (or key) and produces a fixed-

size string of characters, which is usually a hash code. This 

hash code is then used as an index or address into the array 

where the desired value can be found. 

The primary advantage of a hash table is its ability to 

provide efficient insertion, deletion, and retrieval of data. 

When properly implemented, these operations can have an 

average time complexity of 𝑂(1). However, the efficiency 

relies on the distribution and handling of hash collisions, which 

occur when two different keys hash to the same index. 

To handle collisions, various techniques can be employed, 

such as chaining (where each array index points to a linked list 

of elements that hashed to the same index) or open addressing 

(where the algorithm looks for the next available slot in the 

array). 

Hash tables are widely used in computer science due to their 

efficiency in implementing dynamic sets, caches, and 

databases, among other applications. They provide a balance 

between time and space complexity, making them a versatile 

and essential data structure in many algorithms and software 

systems. 

In C++, the unordered_set container in the Standard 

Template Library (STL) is commonly implemented using 

hashing. For our algorithm, we will utilize the existing 

unordered_set provided by C++, taking advantage of its 

hashing-based implementation for efficient coding. 

 

III.   THE ALGORITHM 

A. Motivation 

 
Fig II. A graph consisting of one connected component 

 

 

Traversing the graph depicted in Fig. II, vertices 0 to 4 are 

assumed visited, and the current focus is on vertex 5. Upon 

entering the 'for' loop to check adjacent vertices, it swiftly 

detects that all adjacent vertices are already visited.  

The existing inefficiency in our traversal approach stems 

from a fundamental challenge: the current representation in the 

adjacency list doesn't readily provide a clear distinction 

between neighboring vertices that have already been visited 

and those that are yet to be explored. This lack of 

differentiation introduces a bottleneck in the optimization of 

the traversal algorithm. 

To delve deeper, when examining a vertex's adjacency list, 

the absence of explicit information regarding the visitation 

status of adjacent vertices necessitates additional checks during 

the traversal process. This results in redundant assessments, 

impacting the overall efficiency of the algorithm. The 

algorithm, as it stands, lacks a mechanism to swiftly identify 

previously visited vertices, and this hinders the streamlining of 

the traversal process. 

In response to the inherent challenge at hand, we find 

inspiration to implement a set of strategic maneuvers: 

 

 

 

1. Acknowledging the dense nature of the graph, a pivotal 

strategy involves contemplating the complement of the 

graph, presumed to exhibit sparser characteristics. This 

tactical shift aims to exploit the potential advantages 

offered by a sparser representation, contributing to 

enhanced computational efficiency. 
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2. The adoption of a red-black tree emerges as a judicious 

choice for the storage of unvisited vertices. This 

decision is grounded in the self-balancing properties of 

red-black trees, facilitating optimal insertion, deletion, 

and retrieval operations. Such efficiency contributes 

significantly to the streamlined performance of the 

algorithm. 

 

3. Complementing our approach, the incorporation of a 

hash table is proposed for the storage of edges absent 

from the original graph. This strategic use of a hash 

table leverages its hashing mechanism to expedite 

search and retrieval processes, providing an efficient 

solution for managing edges that do not exist in the 

primary graph structure. 

 

B. Algorithm 

 

Below, we implement the modified DFS algorithm 

incorporating the three strategies mentioned earlier. 

 

  

 

C. Time Complexity Analysis 

 

Each node can be either skipped or visited. After a node is 

visited, it cannot be revisited since it is no longer in 

unvisited. This ensures that each node is visited exactly 

once. Additionally, acknowledging that there are 𝑀 edges 

absent from the graph, and each edge adds exactly 2 to the skip 

count, the total number of skips is bounded by 2𝑀. 

Consequently, the overall computational complexity is 

𝑂(𝑉 log(𝑉) + 𝑀). The factor 𝑂(log 𝑉) is due to calling the 

lower_bound function proportional to the number of times 

the dfs function is called. 

 

IV.   APPLICATION 

 

Currently, the algorithmic approach is clear-cut, and its 

potential utility might not be immediately apparent. To 

illustrate its practicality, we will introduce a problem scenario 

where the modified DFS algorithm becomes valuable. 

To pique interest, we'll present a problem that doesn't 

revolve around a dense graph. We'll illustrate how the modified 

DFS algorithm efficiently solves this problem, despite our 

prior emphasis on its application in the context of dense 

graphs. 

Imagine a sizable grid with dimensions 𝑁 by 𝑁. The flood 

fill algorithm proves valuable in navigating this grid by 

treating each cell as a vertex, with adjacent cells forming edges 

between corresponding vertices. This algorithm finds practical 

application in various scenarios within paint software, notably 

when utilizing the bucket tool. 

Suppose each cell in the grid is assigned a numerical value. 

In this context, a "region" is characterized by a set of cells 

sharing the same number. For a group of cells to constitute a 

region, each cell in the region must be directly adjacent to 

another cell in the same region, considering only above, below, 

left, or right directions (diagonals are not considered). The task 

of identifying the largest region can be efficiently tackled using 

the flood fill algorithm, employing the traditional DFS 

algorithm, with an optimal time complexity of 𝑂(𝑁2). 
Now, if we aim to identify the largest region formed by at 

most two numbers, a naive approach would involve a time 

complexity of 𝑂(𝑁6). This is because, in an 𝑁 x 𝑁 grid, there 

are at most 𝑁2 numbers, resulting in 𝐶(𝑁2, 2) =
𝑁2(𝑁2−1)

2
=

𝑂(𝑁4) pairs of numbers. For each pair, we can find the largest 

possible region in 𝑂(𝑁2), leading to an overall time 

complexity of 𝑂(𝑁6). 
An improved solution can be outlined as follows. We can 

conceptualize the problem as a graph, where each vertex 

denotes the locally maximum region, and edges signify 

adjacency between two regions. The size of the region can be 

stored as the weight of the corresponding vertex. This 

transforms the problem into the quest for a path where the sum 

of weights is maximized, and efficient edge traversal 

algorithms become crucial for this optimization. 

The core concept involves employing a modified DFS. 

Instead of iteratively traversing all edges connected to a vertex 

to identify traversed edges, we utilize a set data structure. This 

allows us to find the untraversed edge in 𝑂(log𝑁) time, as 

opposed to linear time. 

Below is the complete C++ program. The initial input will 

be N, followed by N x N numbers representing the values in 

each cell of the grid. For example, given the input below, the 

output would be 10, using region 10 and region 02. 

 

/* 
We presume that the graph is pre-supplied as input to the 
adjacency list 'adj'. Additionally, we assume that the set 
'unvisited' is initially populated with integers from 0 to V-1, 
where V represents the number of vertices in the graph. In the 
absence of explicit input, global variables, by default, hold 
values of zero or are automatically set to false. 
*/ 
const int V = 1000; 
unordered_set<int> adj[V]; 
set<int> unvisited; 
 
void dfs(int &node) { 
    unvisited.erase(node); 
    auto it = unvisited.begin(); 
    while (it != unvisited.end()) { 
        int neighbour = *it; 
        if (adj[node].count(neighbour)) { 
            ++it; 
            continue; 
        } 
        dfs(neighbour); 
        it = unvisited.lower_bound(neighbour); 
    } 
} 
 
void run() { 
    while (!unvisited.empty()) 
        dfs(*(unvisited.begin())); 
} 

 

4 
03 04 10 04 
05 10 10 02 
10 10 02 08 
03 02 02 10 
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Here is the complete C++ implementation of the described 

approach: 

 

 

#include <bits/stdc++.h> 
using namespace std; 
typedef long long ll; 
 
int n; 
int board[250][250]; 
int board_vertex_id[250][250]; 
int cow_id[62'500]; 
int vertex_size[62'500]; 
set<pair<int, int>> adj[62'500]; 
bool v[250][250]; 
 

void floodfill(int row, int col, int id, int vertex_id, int &region_size) { 
    if (!(0 <= row && row < n && 0 <= col && col < n)) return; 
    if (board[row][col] != id) return; 
    if (v[row][col]) return; 
 
    v[row][col] = true; 
    ++region_size; 
    board_vertex_id[row][col] = vertex_id; 
 
    floodfill(row+1, col, id, vertex_id, region_size); 
    floodfill(row, col+1, id, vertex_id, region_size); 
    floodfill(row-1, col, id, vertex_id, region_size); 
    floodfill(row, col-1, id, vertex_id, region_size); 
} 
 

void dfs(int vertex_id, int other_cow_id, int &total_size, set<int> &visited) { 
    if (visited.find(vertex_id) != visited.end()) return; 
    total_size += vertex_size[vertex_id]; 
    visited.insert(vertex_id); 
 
    auto it = adj[vertex_id].lower_bound({other_cow_id, 0}); 
    while (it != adj[vertex_id].end()) { 
        auto neighbour_vertex_id = it->second; 
        if (it->first != other_cow_id) return; 
        adj[vertex_id].erase(it); 
        adj[neighbour_vertex_id].erase({cow_id[vertex_id], vertex_id}); 
        dfs(neighbour_vertex_id, cow_id[vertex_id], total_size, visited); 
        it = adj[vertex_id].lower_bound({other_cow_id, 0}); 
    } 
} 
int main() {     
    cin >> n; 
    for (int row = 0; row < n; ++row) { 
        for (int col = 0; col < n; ++col) { 
            cin >> board[row][col]; 
        } 
    } 
    int vertex_id = 0; 
    for (int row = 0; row < n; ++row) { 
        for (int col = 0; col < n; ++col) { 
            if (v[row][col]) continue; 
            int region_size = 0; 
            floodfill(row, col, board[row][col], vertex_id, region_size); 
            vertex_size[vertex_id] = region_size; 
            cow_id[vertex_id] = board[row][col]; 
            ++vertex_id; 
        } 
    } 
    for (int row = 0; row < n; ++row) { 
        for (int col = 0; col < n-1; ++col) { 
            if (board_vertex_id[row][col] == board_vertex_id[row][col+1]) continue; 
            adj[board_vertex_id[row][col]].insert({board[row][col+1], board_vertex_id[row][col+1]}); 
            adj[board_vertex_id[row][col+1]].insert({board[row][col], board_vertex_id[row][col]}); 
        } 
    } 
    for (int row = 0; row < n-1; ++row) { 
        for (int col = 0; col < n; ++col) { 
            if (board_vertex_id[row][col] == board_vertex_id[row+1][col]) continue; 
            adj[board_vertex_id[row][col]].insert({board[row+1][col], board_vertex_id[row+1][col]}); 
            adj[board_vertex_id[row+1][col]].insert({board[row][col], board_vertex_id[row][col]}); 
        } 
    } 
    int second_answer = 0; 
    for (int i = 0; i < vertex_id; ++i) { 
        while (!adj[i].empty()) { 
            auto it = adj[i].begin(); 
            int total_size = 0; 
            set<int> visited; 
            dfs(i, it->first, total_size, visited); 
            second_answer = max(second_answer, total_size); 
        } 
    } 
 
    cout << second_answer; 
} 
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                     Input                                  Output 

 

The code begins by taking the input 𝑁, representing the size 

of the grid. Subsequently, it reads 𝑁 by 𝑁 numbers to form the 

grid. Following this, a standard flood-fill algorithm is initiated. 

Each connected component within the grid is treated as a 

vertex, and the weight assigned to the vertex corresponds to the 

number of cells within the connected component. The next step 

involves establishing edges by traversing the grid, considering 

every adjacent horizontal and vertical pair of cells. 

Subsequently, the program navigates through the graph using a 

technique akin to the modified depth-first search (DFS) 

algorithm. 

It's important to note that this isn't an entirely distinct 

algorithm from the modified DFS algorithm. We continue to 

employ the lower_bound function to determine the next 

vertex to traverse, akin to the modified DFS algorithm. 

Consequently, the concept behind the algorithm in the 

modified DFS isn't exclusively tailored for dense graphs; 

rather, it can be applied in various scenarios. 

 

 

V.   CONCLUSION 

While we have presented the modified DFS algorithm, we 

have also showcased several alternative strategies. These 

include employing a balanced binary tree in place of a 

conventional array to eliminate redundant checks, utilizing an 

array of hash tables for efficient validation, formulating the 

problem within the framework of graph theory, and exploring 

various other approaches. 

We have also presented an application of the idea, 

demonstrating that even when the graph is not dense, the 

essence of the modified DFS algorithm can still be effectively 

utilized to solve the problem. 

This paper explores several key concepts. Firstly, it delves 

into time complexity analysis. Additionally, we employ the 

concept of a tree, specifically a balanced binary search tree 

using a red-black tree structure, enabling efficient 𝑂(log𝑛) 
operations. Combinatorial arguments are utilized to determine 

the time complexity. Moreover, the study incorporates data 

structures that leverage hashing. 
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